§
    uhþhe  ã                   óH  — d Z ddlZddlmZmZmZmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZ ddlmZ g Ze ed e	d ej        dej        ¬¦  «                             ej        ¦  «         ej        d	ej        ¬¦  «                             ej        ¦  «        d
h¬¦  «         e	d ej        ddgddgg¦  «         ej        ddg¦  «        j        ¦  «         e	d ej        ddgddgg¦  «         ej        ddg¦  «        j        ¦  «        g¦  «        z  Ze ed e	d ej        ddgddgg¦  «        d¦  «        g¦  «        z  Z G d„ de
¦  «        Z G d„ dee¦  «        Z G d„ dee¦  «        Z G d„ dee¦  «        Z  G d„ dee¦  «        Z! G d„ dee¦  «        Z" G d „ d!ee¦  «        Z# G d"„ d#ee¦  «        Z$ G d$„ d%ee¦  «        Z% G d&„ d'ee¦  «        Z& G d(„ d)e¦  «        Z' G d*„ d+e'e¦  «        Z( G d,„ d-e'e¦  «        Z) G d.„ d/e'e¦  «        Z* G d0„ d1e¦  «        Z+dS )2z9 Test functions for linalg module using the matrix class.é    N)Ú	CondCasesÚDetCasesÚEigCasesÚEigvalsCasesÚInvCasesÚ
LinalgCaseÚLinalgTestCaseÚ
LstsqCasesÚ	PinvCasesÚ
SolveCasesÚSVDCasesÚ_TestNorm2DÚ_TestNormDoubleBaseÚ_TestNormInt64BaseÚ_TestNormSingleBaseÚ	apply_tag)ÚTestQRÚsquareÚ
0x0_matrix)r   r   )Údtype)r   é   zsize-0)ÚtagsÚmatrix_b_onlyg      ð?g       @g      @g      @Úmatrix_a_and_bÚ	hermitianÚhmatrix_a_and_bc                   ó   — e Zd ZeZdS )ÚMatrixTestCaseN)Ú__name__Ú
__module__Ú__qualname__ÚCASESÚ
TEST_CASES© ó    ú_/var/www/histauto/venv/lib/python3.11/site-packages/numpy/matrixlib/tests/test_matrix_linalg.pyr   r   0   s   € € € € € Ø€J€J€Jr%   r   c                   ó   — e Zd ZdS )ÚTestSolveMatrixN©r   r    r!   r$   r%   r&   r(   r(   4   ó   € € € € € Ø€Dr%   r(   c                   ó   — e Zd ZdS )ÚTestInvMatrixNr)   r$   r%   r&   r,   r,   8   r*   r%   r,   c                   ó   — e Zd ZdS )ÚTestEigvalsMatrixNr)   r$   r%   r&   r.   r.   <   r*   r%   r.   c                   ó   — e Zd ZdS )ÚTestEigMatrixNr)   r$   r%   r&   r0   r0   @   r*   r%   r0   c                   ó   — e Zd ZdS )ÚTestSVDMatrixNr)   r$   r%   r&   r2   r2   D   r*   r%   r2   c                   ó   — e Zd ZdS )ÚTestCondMatrixNr)   r$   r%   r&   r4   r4   H   r*   r%   r4   c                   ó   — e Zd ZdS )ÚTestPinvMatrixNr)   r$   r%   r&   r6   r6   L   r*   r%   r6   c                   ó   — e Zd ZdS )ÚTestDetMatrixNr)   r$   r%   r&   r8   r8   P   r*   r%   r8   c                   ó   — e Zd ZdS )ÚTestLstsqMatrixNr)   r$   r%   r&   r:   r:   T   r*   r%   r:   c                   ó   — e Zd Zej        ZdS )Ú_TestNorm2DMatrixN©r   r    r!   ÚnpÚmatrixÚarrayr$   r%   r&   r<   r<   X   ó   € € € € € ØŒI€E€E€Er%   r<   c                   ó   — e Zd ZdS )ÚTestNormDoubleMatrixNr)   r$   r%   r&   rC   rC   \   r*   r%   rC   c                   ó   — e Zd ZdS )ÚTestNormSingleMatrixNr)   r$   r%   r&   rE   rE   `   r*   r%   rE   c                   ó   — e Zd ZdS )ÚTestNormInt64MatrixNr)   r$   r%   r&   rG   rG   d   r*   r%   rG   c                   ó   — e Zd Zej        ZdS )ÚTestQRMatrixNr=   r$   r%   r&   rI   rI   h   rA   r%   rI   ),Ú__doc__Únumpyr>   Únumpy.linalg.tests.test_linalgr   r   r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   Ú_TestQRr"   ÚemptyÚdoubleÚviewr?   r@   ÚTr   r(   r,   r.   r0   r2   r4   r6   r8   r:   r<   rC   rE   rG   rI   r$   r%   r&   ú<module>rR      sç  ðØ ?Ð ?Ø Ð Ð Ð ðð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð$ =Ð <Ð <Ð <Ð <Ð <à
€ð ˆˆ8Ø€Jˆ|ØˆrŒx˜ b¤iÐ0Ñ0Ô0×5Ò5°b´iÑ@Ô@ØˆrŒx˜ b¤iÐ0Ñ0Ô0×5Ò5°b´iÑ@Ô@ØJð ñ  ô  ð €JˆØˆrŒx˜"˜b˜ B¨ 8Ð,Ñ-Ô-ØˆrŒy˜"˜b˜Ñ"Ô"Ô$ñ&ô &ð €JÐØˆrŒy˜2˜r˜( R¨ HÐ-Ñ.Ô.ØˆrŒy˜"˜b˜Ñ"Ô"Ô$ñ&ô &ðñ 
ô 
ñ €ð ˆˆ;Ø€JÐ ØˆrŒy˜2˜r˜( R¨ HÐ-Ñ.Ô.Øñô ð!ñ 
ô 
ñ €ðð ð ð ð ^ñ ô ð ð	ð 	ð 	ð 	ð 	j .ñ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	H˜nñ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	˜ nñ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	H˜nñ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	H˜nñ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	Y ñ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	Y ñ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	H˜nñ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	j .ñ 	ô 	ð 	ðð ð ð ð ˜ñ ô ð ð	ð 	ð 	ð 	ð 	Ð,Ð.Añ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	Ð,Ð.Añ 	ô 	ð 	ð	ð 	ð 	ð 	ð 	Ð+Ð-?ñ 	ô 	ð 	ðð ð ð ð 7ñ ô ð ð ð r%   